Eigenvalue Bounds for the Fractional Laplacian: a Review
نویسنده
چکیده
We review some recent results on eigenvalues of fractional Laplacians and fractional Schrödinger operators. We discuss, in particular, Lieb–Thirring inequalities and their generalizations, as well as semi-classical asymptotics.
منابع مشابه
On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملThe eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition
Keywords: Upper and lower solutions p-Laplacian operator Fractional differential equation Integral boundary condition Eigenvalue a b s t r a c t In this paper, we are concerned with the eigenvalue problem of a class of singular p-Lapla-cian fractional differential equations involving the Riemann–Stieltjes integral boundary condition. The conditions for the existence of at least one positive sol...
متن کاملOn Riesz Means of Eigenvalues
In this article we prove the equivalence of certain inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian with a classical inequality of Kac. Connections are made via integral transforms including those of Laplace, Legendre, Weyl, and Mellin, and the Riemann-Liouville fractional transform. We also prove new universal eigenvalue inequalities and monotonicity principles for Diric...
متن کاملThe clique and coclique numbers’ bounds based on the H-eigenvalues of uniform hypergraphs
In this paper, some inequality relations between the Laplacian/signless Laplacian H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a connected uniform hypergraph, some tight lower bounds on the largest Laplacian H+-eigenvalue and signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some upper and lower bounds on the clique/...
متن کاملPólya’s Conjecture Fails for the Fractional Laplacian
The analogue of Pólya’s conjecture is shown to fail for the fractional Laplacian (−∆) on an interval in 1-dimension, whenever 0 < α < 2. The failure is total: every eigenvalue lies below the corresponding term of the Weyl asymptotic. In 2-dimensions, the fractional Pólya conjecture fails already for the first eigenvalue, when 0 < α < 0.984. Introduction. The Weyl asymptotic for the n-th eigenva...
متن کامل